11,997 research outputs found

    Why Do Athletes Use Eye Black?

    Get PDF

    Energetic Consequences for a Northern, Range-Edge Lizard Population

    Full text link
    Lizards at the northern, cool edge of their geographic range in the northern hemisphere should encounter environmental conditions that differ from those living near the core of their range. To better understand how modest climate differences affect lizard energetics, we compared daily feeding and metabolism rates of individual Sceloporus occidentalis in two populations during mid-summer. Chuckanut Beach (CB) was a cool, maritime climate in northern Washington State, and Sondino Ranch (SR) was a warmer, drier climate in southern, inland Washington. We found no difference between populations in daily energy expenditure (DEE), as calculated from doubly labeled water estimates. The CB population, however, had significantly higher prey availability and rate of daily energy intake (DEI) as estimated from fecal pellet masses. Consequently, CB lizards had higher size-adjusted body masses than lizards from SR. Within CB, during midsummer, DEE was similar to DEI. Within the SR population, DEE trended higher than DEI during midsummer, but was not significantly different. We found no population differences in lizard activity, active body temperature, or preferred body temperature. Hence, we infer the longer activity season for the SR population may compensate for the low food availability and high daily energy cost of midsummer. Moreover, for the CB population, we infer that cooler temperatures and higher food availability allow the lizards to compensate for the shorter activity. We also suggest the CB population may benefit from the predicted warmer temperatures associated with climate change given the similar activity-period body temperatures and DEE between these lizard populations assuming food availability is sufficient

    Application of higher harmonic blade feathering for helicopter vibration reduction

    Get PDF
    Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment

    Pressure application technique for high-temperature composite fabrication

    Get PDF
    Technique utilizes characteristic of room-temperature vulcanizing rubber (RTV) which expands readily when heated. RTV expansion can exert uniform pressure on filament-reinforced polymer materials during curing. Technology accommodates high-temperature pressure application for P13-N polyimide composite consolidation during cure

    Thermal control system for a spacecraft modular housing

    Get PDF
    The development of a thermal control system for a spacecraft module is discussed. The wall structures are composed of superinsulation in some cases and of thermally conductive material in other cases. Heat pipes are installed to provide a path of heat transfer from the interior of the module to space. The design of the system makes it possible to maintain a relatively uniform temperature throughout the module with side variations of the amount of heat dissipated by the components within the module

    Chandrasekhar equations for infinite dimensional systems

    Get PDF
    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included

    A Note on a "Square-Root Rule" for Reinsurance

    Get PDF
    In previous work, the current authors derived a mathematical expression for the optimal (or "saturation") number of reinsurers for a given number of primary insurers (see Powers and Shubik, 2001). In the current paper, we show analytically that, for large numbers of primary insurers, this mathematical expression provides a "square-root rule"; i.e., the optimal number of reinsurers in a market is given asymptotically by the square root of the total number of primary insurers. We note further that an analogous “fourth-root rule” applies to markets for retrocession (the reinsurance of reinsurance).Primary insurance, Reinsurance, Market size, Square-root rule
    corecore